NT

Cho 4 số a,b,c,d thỏa mãn điều kiện a+b+c+d=2

Chứng minh rằng :\(a^2+b^2+c^2+d^2>=1\)

TT
23 tháng 9 2020 lúc 22:01

Áp dụng liên tiếp BĐT quen thuộc \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) ta được :

\(\left(a^2+b^2\right)+\left(c^2+d^2\right)\) \(\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)

\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2}{2}\ge\frac{\frac{\left(a+b+c+d\right)^2}{2}}{2}=\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\)

Do đó : \(a^2+b^2+c^2+d^2\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
24 tháng 9 2020 lúc 19:50

Theo Svacxo ta có : \(LHS\ge\frac{\left(a+b+c+d\right)^2}{4}=\frac{2^2}{4}=1\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=d=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
FT
Xem chi tiết
LD
Xem chi tiết
NP
Xem chi tiết
KG
Xem chi tiết
NL
Xem chi tiết
CN
Xem chi tiết
LD
Xem chi tiết
H24
Xem chi tiết