Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NN

cho 3x-y=3z và 2+y=7z. Tính giá trị của biểu thức \(M=\frac{x^2-2xy}{x^2+y^2}\)(x khác 0,y khác 0)

AN
23 tháng 11 2016 lúc 23:43

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

Bình luận (0)
AN
23 tháng 11 2016 lúc 23:46

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

Bình luận (0)
ND
12 tháng 12 2017 lúc 21:17

\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)

\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)

thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)

thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
HK
Xem chi tiết
TA
Xem chi tiết
NV
Xem chi tiết
TG
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết