\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)= \(\frac{1}{2}\)
=> \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{1}{2}\)
T i c h cho mình nha