TN

Cho 3 số x;y;z thỏa mãn: \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}\)

Chứng minh rằng \(\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\)

EC
1 tháng 12 2019 lúc 15:46

Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)

khi đó, ta có: (x - z)3 =  (2012k - 2014k)3 = (-2k)3 = -8k3

 8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3

=> (x - z)3 = 8(x - y)2(y - z)

Bình luận (0)
 Khách vãng lai đã xóa