DY

Cho 3 số tự nhiên a,b,c. C/m: 

Nếu a+b+c chia hết cho 3 thì a3+b3+c3+3a2+3b2+3c2 chia hết cho 6

AN
15 tháng 2 2017 lúc 10:25

Ta có: \(S=a^3+b^3+c^3+3a^2+3b^2+3c^2\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(3a^2-3a\right)+\left(3b^2-3b\right)+\left(3c^2-3c\right)+4\left(a+b+c\right)\)

\(=a\left(a+1\right)\left(a-1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)+3a\left(a-1\right)+3b\left(b-1\right)+3c\left(c-1\right)+4\left(a+b+c\right)\)

Ta thấy: \(\hept{\begin{cases}a\left(a-1\right)\left(a+1\right)⋮6\\b\left(b-1\right)\left(b+1\right)⋮6\\c\left(c-1\right)\left(c+1\right)⋮6\end{cases}}\)(1)

\(\hept{\begin{cases}3a\left(a-1\right)⋮6\\3b\left(b-1\right)⋮6\\3c\left(c-1\right)⋮6\end{cases}}\)(2)

\(4\left(a+b+c\right)⋮6\)(3)

Từ (1),(2),(3) ta suy ra \(S⋮6\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
PS
Xem chi tiết
PK
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
DH
Xem chi tiết