Dễ lắm bạn! Biến đổi tương đương là ok á!
\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(VT\ge3\left[\frac{\left(x+y+z\right)^2}{3}\right]=\frac{3\left(x+y+z\right)^2}{3}=VP\left(đpcm\right)\)(bất đẳng thức svacxo)
Dễ lắm bạn! Biến đổi tương đương là ok á!
\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(VT\ge3\left[\frac{\left(x+y+z\right)^2}{3}\right]=\frac{3\left(x+y+z\right)^2}{3}=VP\left(đpcm\right)\)(bất đẳng thức svacxo)
cho 3 số thực x,y,z sao cho x+y+z=1 CMR
\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right)\)
Cho x,y,z là 3 số thực dương thỏa mãn \(4x^2+3\left(y^2+z^2\right)+6xyz=4\)
CMR :\(2x+\sqrt{3}\left(y+z\right)\le3\)
Cho x,y,z>0. CMR: \(16xyz\left(x+y+z\right)\le3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}\)
cho x;y;z là các số thực dương thỏa mãn x;y;z>.CMR:\(\left(x^2+2yz\right)\left(y^2+2zx\right)\left(z^2+2xy\right)\ge xyz\left(x+2y\right)\left(y+2z\right)\left(z+2x\right)\)
ta có:(vế phải)2\(\le3\left(\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\right)\)
cần chứng minh:
(vế trái)2/3\(\ge\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\)
\(\Leftrightarrow\frac{x}{y+z}\left(\frac{x^3+\frac{1}{3}}{y+z}-x^2\right)+...\ge0\)
\(\Leftrightarrow\frac{x^2}{y+z}\left(x-y\right)\left(x-z\right)+\frac{y^2}{z+x}\left(y-x\right)\left(y-z\right)+\frac{z^2}{x+y}\left(z-x\right)\left(z-y\right)\ge0\)
bđt luôn đúng vì là bđt schur mở rộng
Cho x,y,z là các số thực dương thỏa mãn \(x^4+\left(y^2-1\right)^2+z^4\le3\)
Tìm GTLN của biểu thức \(A=\sqrt{2}y\left(x+z\right)+\frac{1}{x^2+y^2+z^2+1}\)
Cho x,y,z là các số thực không âm và đôi một phân biệt . CMR :
\(\frac{x+y}{\left(x-y\right)^2}+\frac{y+z}{\left(y-z\right)^2}+\frac{z+x}{\left(z-x\right)^2}\ge\frac{9}{x+y+z}\)
Cho \(0\le x,y,z\le3\) . Tìm GTLN của:
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{z\left(z-2x\right)+x^2}\)
Cho a,b,c là các số thực dương. CMR:
\(xyz\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\left(y^2+zx\right)\left(z^2+xy\right)\left(x^2+yz\right)\)