Violympic toán 9

TZ

Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).Tìm GTLN của biểu thức

\(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

NL
26 tháng 2 2019 lúc 22:15

\(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=2\)

Lại có \(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

Tương tự \(\dfrac{1}{x+2y+z}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{4}\left(\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

Cộng vế với vế: \(P\le\dfrac{1}{2}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{1}{2}.2=1\)

\(\Rightarrow P_{max}=1\) khi \(x=y=z=\dfrac{3}{4}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
DF
Xem chi tiết
LN
Xem chi tiết