Cho 3 số thực dương a,b,c thỏa mãn a+2b+3c ≥ 20.
Tìm GTNN của biểu thức A=a+b+c+3/a+9/2b+4/c
cho : a,b,c là các số thực dương thỏa mãn a +2b +3c = 13
tìm GTNN của P = \(\left(a-1\right)^2\left(b-1\right)^2+\left(c-1\right)^2\)
cho a , b , c là 3 só thực dương thỏa mãn : a + 2b + 3c = 1 . Tìm max của \(P=\frac{6bc}{\sqrt{a+6bc}}+\frac{3ac}{\sqrt{2b+3ac}}+\frac{2ab}{\sqrt{3c+2ab}}\)
cho a,b,c thuộc Q thỏa mãn a+2b+3c>=20. Tím GTNN: a+b+c+3/a+9/2b+4/c
Cho các số thực dương a,b,c thỏa mãn \(a+b+c=1\)
Tìm GT lớn nhất của \(P=\sqrt{a+2b+3c}+\sqrt{c+2a+3b}+\sqrt{a+2b+3c}\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
CHo các số thực dương a,b thỏa mãn ab=1. Tìm GTNN của\(A=\left(2a+2b-3\right)\left(a^3+b^3\right)+\frac{7}{\left(a+b\right)^2}\)
cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}=2017\)
Tìm max \(P=\dfrac{1}{2a+3b+3c}+\dfrac{1}{3a+2b+3c}+\dfrac{1}{3a+3b+2c}\)
Cho a,b,c là các số thực dương thỏa mãn \(a+2b+3c\ge20\)
Tìm min \(T=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{3c}\)
Chú ý:Không sửa đề thành \(\frac{4}{c}\)