H24

Cho 3 số dương x,y,z thỏa mãn x+y+z=2. tìm GTNN của biểu thức : P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)

H24
10 tháng 6 2019 lúc 10:50

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=1.\)

Dấu "=" xảy ra khi:

\(x=y=z=\frac{2}{3}\)

Bình luận (0)
TD
10 tháng 6 2019 lúc 10:50

Áp dụng BĐT Cô-si cho 2 số dương \(\frac{x^2}{y+z}\)và \(\frac{y+z}{4}\), ta được :

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=2.\frac{x}{2}=x\)  ( 1 )

Tương tự : \(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\)                                       ( 2 )

                \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)                                          ( 3 )

Cộng ( 1 ) , ( 2 ) và ( 3 ) , ta được :

\(\left(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\right)+\frac{x+y+z}{2}\ge x+y+z\)

\(P\ge\left(x+y+z\right)-\frac{x+y+z}{2}=1\) 

Dấu " = " xảy ra \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Vậy GTNN của P là 1 \(\Leftrightarrow\)x = y = z = \(\frac{2}{3}\)

Bình luận (0)

\(\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{x+z}+\frac{z\left(x+y+z\right)}{x+y}\)

\(\Rightarrow P+\left(x+y+z\right)=\left(x+y+z\right)\left(\frac{x}{x+y}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)hay \(P+2=2\cdot\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\).Mặt khác \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\frac{3}{2}\)

Do đó \(P+2\ge2\cdot\frac{3}{2}=3\Rightarrow P\ge1\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{x}{xy+xz}=\frac{y}{yx+yz}=\frac{z}{zx+zy}\\x=y=z\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{y+z}=\frac{1}{x+z}=\frac{1}{x+y}\\x=y=z\end{cases}\Leftrightarrow}x=y=z=\frac{2}{3}}\)

Bình luận (0)
 Khách vãng lai đã xóa
CN
24 tháng 3 2020 lúc 11:45

Áp dụng bất đẳng thức svacsơ cho P ta được :

\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}\)

\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\)

\(P\ge\frac{x+y+z}{2}\)

\(P\ge\frac{2}{2}=\left(x+y+z=2\right)\)

Vậy MIn P = 1 khi x=y=z=2/3

Bình luận (0)
 Khách vãng lai đã xóa
NL
6 tháng 8 2020 lúc 16:20

Bài làm:

Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

\(\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi: \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
PN
6 tháng 8 2020 lúc 16:30

Sử dụng BĐT Cauchy Schwarz dạng Engel ta có :

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{x+y+z+x+y+z}\)

\(=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)(do x+y+z=2)

Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{2}{3}\)

Vậy \(Min_P=1\)đạt được khi \(x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CD
Xem chi tiết
NP
Xem chi tiết
H24
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
CH
Xem chi tiết
PH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết