PA

cho 3 số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

cmr : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

HN
10 tháng 9 2016 lúc 10:53

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+zx=xyz\)

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Bình phương vế trái : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z+xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)Bình phương vế phải : 

\(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=\left(xyz+x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra cần phải chứng minh : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)(*)

Thật vậy, theo bđt Bunhiacopxki ta có : \(\sqrt{x+yz}.\sqrt{y+zx}\ge\sqrt{xy}+z\sqrt{xy}\)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)

Cộng các bđt trên theo vế ta chứng minh được (*) đúng.

Vậy bđt ban đầu được chứng minh.

 

 

Bình luận (3)
LF
14 tháng 2 2017 lúc 22:46

Ý tưởng khác

Cũng từ giả thiết suy ra \(xyz=xy+yz+xz\)

Suy ra \(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+xz}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Theo BĐT Cauchy-Schwarz ta có \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\) do đó:

\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{x}=\sqrt{x}+\sqrt{\frac{yz}{x}}\)

Tương tự cho 2 BĐT còn lại \(\sqrt{y+xz}\ge\sqrt{y}+\sqrt{\frac{xz}{y}};\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\)

Cộng theo vế 3 BĐT được \(VT\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\) (Đpcm)

Bình luận (0)
TD
10 tháng 9 2016 lúc 14:32

bằng 3

Bình luận (0)
NT
1 tháng 6 2018 lúc 11:56

ttttttt

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
LF
Xem chi tiết
C1
Xem chi tiết
LC
Xem chi tiết
NK
Xem chi tiết
CW
Xem chi tiết
TM
Xem chi tiết
XB
Xem chi tiết
PA
Xem chi tiết