Violympic toán 9

AG

Cho 3 số dương x,y,z thỏa mãn \(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\ge2\)

CMR: \(xyz\le\dfrac{1}{8}\)

SC
5 tháng 1 2018 lúc 21:42

Ta có: \(\dfrac{1}{1+x}\ge2-\dfrac{1}{1+y}-\dfrac{1}{1+z}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}\)

\(=\dfrac{y}{1+y}+\dfrac{z}{1+z}=2\sqrt{\dfrac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}}\\\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\end{matrix}\right.\)

Nhân các vế của 3 bđt trên => ĐPCM

Bình luận (1)

Các câu hỏi tương tự
TU
Xem chi tiết
TT
Xem chi tiết
NN
Xem chi tiết
MM
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
PA
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết