Violympic toán 9

NN

Cho x,y,z là các số thực dương. Chứng minh rằng:

\(\dfrac{1}{x^3+y^3+xyz}+\dfrac{1}{y^3+z^3+xyz}+\dfrac{1}{z^3+x^3+xyz}\le\dfrac{1}{xyz}\)

HD
18 tháng 11 2017 lúc 10:54

do x,y,z là các số dương nên

\(x^2-xy+y^2\ge xy\Leftrightarrow x^3+y^3\ge xy\left(x+y\right)\)

tương tự ta cũng có : \(y^3+z^3\ge yz\left(y+z\right)\)

\(z^3+x^3\ge zx\left(z+x\right)\)

\(\Rightarrow\Sigma\dfrac{1}{x^3+y^3+xyz}\le\Sigma\dfrac{1}{xy\left(x+y+z\right)}=\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\)

\(=\dfrac{1}{x+y+z}\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
NN
Xem chi tiết
AG
Xem chi tiết
HC
Xem chi tiết
TU
Xem chi tiết
NT
Xem chi tiết