Cho 3 số dương 0<x<y<z<1 .CM/R: \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}=< 2\)2
)Cho a+b+c=1 và a^2+b^2+c^2=1 và x/a=y/b=z/c. cm: xy+yz+zx=0
cho các số nguyên dương x,y,z thỏa mãn \(xyz=1\)chứng minh rằng
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
cho các số nguyên dương x,y,z thỏa mãn \(xyz=1\)chứng minh rằng
\(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
Cho 3 số dương 0< hoặc bằng x < hoặc bằng y < hoặc bằng z < hoặc bằng 1. CM \(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\)< hoặc bằng 2
cho ba số thực dương x,y,z thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)
tính giá trị biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+zx}\)
Bài 1: Cho ba số x,y,z \(\ne0\)thỏa mãn\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)(với giả thiết các tỉ số đều có nghĩa). Tính giá trị biểu thức : A=\(\frac{xy+yz+zx}{x^2+y^2+z^2}\)
cho 3 số nguyên dương \(0\le x\le y\le z\)\(\le1\).CM/r:
\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le2\)
Bài 3:
b) cho x,y,z là các số thựu thoả mãn xyz=1. tính giá trị của biểu thức
T= 2022/1+x+xy + 2022/1+y+yz + 2022/1+z+zx