Cho \(4a^2+b^2+c^2\le4\). CMR: \(ab+bc+ca\le1+\sqrt{3}\)
Cho 3 số thực dương a,b,c thỏa mãn a + b + c = 2. CMR:
\(\frac{ab}{\sqrt{2c+ab}}+\frac{bc}{\sqrt{2a+bc}}+\frac{ca}{\sqrt{2b+ca}}\le1\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2=3\). CMR: \(\frac{1}{4-\sqrt{ab}}+\frac{1}{a-\sqrt{bc}} +\frac{1}{4-\sqrt{ca}}\le1\)
Cho các số a,b,c là các số thực dương thỏa mãn: ab+bc+ca=3.
CMR : \(\frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le1\)
Cho a, b,c là các số thực dương thỏa mãn ab +bc+ca =3.
Cmr: \(\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{c^2+a^2+1}\le1\)
Cho các số thực dương thỏa mãn: \(ab^2+bc^2+ca^2-4abc=0\).
Chứng minh; \(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\le4\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
cho 3 số a,b,c thỏa mãn a^2+b^2+c^2=1. chứng minh \(\frac{-1}{2}\le ab+bc+ca\le1\)