Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{2^2}{3}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2}{3}\)
Vậy .............
Ta dễ có BĐT sau \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Khi đó \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{4}{3}\)
Đẳng thức xảy ra tại a=b=c=2/3