TN

cho 3 số a,b,c thỏa mãn a+b+c=1 và a^3+b^3+c^3=1 Chứng minh rằng a^2005+b^2005+c^2005 =1

NV
26 tháng 6 2018 lúc 9:32

Do a3+b3+c3=1;a+b+c=1→a3+b3+c3=a+b+c→3(a+b)(b+c)(c+a)=0→a=−b hoặc b=−c hoặc c=−aa3+b3+c3=1;a+b+c=1→a3+b3+c3=a+b+c→3(a+b)(b+c)(c+a)=0→a=−b hoặc b=−c hoặc c=−a
Nếu a=−ba=−b thì a2005+b2005+c2005=a2005−a2005+c2005=c2005=1 vì a-a+c=1a2005+b2005+c2005=a2005−a2005+c2005=c2005=1 vì a-a+c=1
Tương tự ta cũng được a2005+b2005+c2005=1a2005+b2005+c2005=1
Vậy với a+b+c=1;a3+b3+c3=1a+b+c=1;a3+b3+c3=1 thì a2005+b2005+c2005=1

do máy mình bị lỗi bàn phím nên giả sử a3 thì là a mũ 3 nha

cảm ơn

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
VT
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
KT
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
DV
Xem chi tiết