Cho 3 số a, b, c sao cho :
\(0\le a\le2\); \(0\le b\le2\); \(0\le c\le2\) và a + b + c = 3.
Chứng minh rằng : \(a^2+b^2+c^2\le5\).
cho \(0\le a\le2,0\le b\le2,0\le c\le2\) và a+b+c=3.chứng minh \(a^2+b^2+c^2\le5\)
cho 0 \(\le a\le2,0\le b\le2,0\le c\le2\)và a+b+c=3. Chứng minh a^2+b^2+c^2bé hơn hoặc bằng 5
Bài 1: a) Cho a+b+c=6 và ab+bc+ac=9. Chứng minh rằng 0<a<4; 0<b<4; 0<c<4.
b) Cho a+b+c=2 và a2+b2+c2=2. Chứng minh rằng: \(0\le a\le\frac{4}{3};\)\(0\le b\le\frac{4}{3};\)\(0\le c\le\frac{4}{3}.\)
cho ba số a,b,c thỏa mãn \(0\le a,b,c\le2\)và \(a+b+c=3\)Chứng minh rằng : \(a^3+b^3+c^3\le9\)
Cho a+b+c=2 và 2 +b2+c2=2. Chứng minh: \(0\le a\le\frac{4}{3};0\le b\le\frac{4}{3};0\le c\le\frac{4}{3}\)
B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
Cho 3 số thực a,b,c thỏa mãn:\(3\le a\le5;3\le b\le5;3\le c\le5\)và \(a^2+b^2+c^2=50\).Tìm giá trị nhỏ nhất của P = a + b + c
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{c}+\frac{b^2+c^2}{a}+\frac{c^2+a^2}{b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)