Cho ba số a,b,c>0 thỏa mãn\(\frac{a+b-3c}{c}=\frac{b+c-3a}{a}=\frac{c+a-3b}{b}\)Chứng minh rằng a=b=c
Cho các số a,b,c,d thõa mãn điều kiện:\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)và a+b+c+d khác 0.Chứng minh rằng a=b=c=d
các số a,b,c,d thỏa mãn điều kiện:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\left(a+b+c+d\ne0\right)\)
chứng minh rằng a=b=c=d
Cho a,b,c,d thoả mãn điều kiện
a/3b=b/3c=c/3d=d/3a và a+b+c+d khác 0. Chứng minh rằng a=b=c=d
Các số a, , b , c , d thỏa mãn điều kiện :\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\) và a+ b + c + d \(\ne\)0 .
Chứng minh a = b =c =d
Cho 3 số dương a, b, c thỏa mãn : \(\frac{2a+b-c}{c}=\frac{2b+c-a}{a}=\frac{2c+a-b}{b}\)
Tính \(A=\frac{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}\)
Cho 3 số thực dương thỏa mãn đk:\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
Tính: P=\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{a+c}{b}\)
Cho ba số a; b; c > 0 thỏa mãn: \(\dfrac{a+b-3c}{c}=\dfrac{b+c-3a}{a}=\dfrac{c+a-3b}{b}\)
Chứng minh rằng a = b =c.
Cho 3 số nguyên dương a,b,c thoả mãn 9a^2+3b+3c+1, 9b^2+3a+3b+1mđều là cái số chính phương. Chứng minh a=b=c