Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho a, b, c là số dương thỏa mãn a+b+c=1
CMR:
a2/b+b2/c+c2/a>=3(a2+b2+c2)
Mình cần gấp ạ !!
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho a,b,cϵ{-1;2} thỏa mãn a+b+c=0.Tìm GTLN của P= a2+b2+c2
Cho các số thực a, b, c thỏa mãn 2.( b2 + bc + c2) = 3.( 3 – a2). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a + b + c
a, Cho 3 số thực a, b, c thỏa mãn a+b+c=0. CMR a5+b5+c5=5/2abc(a2+b2+c2)
b, Tìm số thực x thỏa mãn (3x-2)5+(5-x)5+(-2x-3)5=0
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;
∑2a2−bcb2−bc+c2≥3
Bài 8:
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ay
Cho a, b, c là các số thực thỏa mãn a ≥ 3 và abc = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{2}{3}\).a2 + b2 + c2 - (ab + bc + ca).
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2