b) \(AB=\sqrt{\left(-4-0\right)^2+\left(1-2\right)^2}=\sqrt{17}\)
\(AC=\sqrt{\left(-4-3\right)^2+\left(1+1\right)^2}=\sqrt{53}\)
\(BC=\sqrt{\left(0-3\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)
Nửa chu vi là:
\(P=\dfrac{AB+BC+AC}{2}=\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\)
Diện tích là:
\(S=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-AC\right)\cdot\left(P-BC\right)}\)
\(=\sqrt{\dfrac{\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{-\sqrt{17}+\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}-\sqrt{53}+3\sqrt{2}}{2}\cdot\dfrac{\sqrt{17}+\sqrt{53}-3\sqrt{2}}{2}}\)
\(=\dfrac{15}{2}\left(đvdt\right)\)