Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
Ta có: 2^n+1;2^n;2^n-1 là 3 số tự nhiên liên tiếp
=>một trong 3 số trên chia hết cho 3
mà 2^n+1 là số nguyên tố(n>2)=>2^n+1 ko chia hết cho 3
mặt khác: 2^n ko chia hết cho 3
=>2^n-1 chia hết cho 3
Cho 2^n+1 là số nguyên tố (n>2). Chứng minh 2^n-1 là hợp số
cho 2^n+1 là số nguyên tố(n>2). Chứng minh 2^n-1 là hợp số
cho 2^n+1 là số nguyên tố (n>2). Chứng minh 2^n -1 là hợp số
cho (2^n)+1 là số nguyên tố (n>2). chứng minh (2^n)-1 là hợp số
Cho 2^n +1 là số nguyên tố ( n>2). Chứng minh rằng :2^n - 1 là hợp số
Cho 2n+! là số nguyên tố (n>2). Chứng minh 2n-1 là hợp số.
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,
Bài 1:Cho n là số nguyên tố và 1 trong 2 số là 8p+1 và 8n-1 là 2 số nguyên tố. Hỏi số còn lại là hợp số hay số nguyên tố?
Bài 2: Hai số\(2^n-1\)và \(2^n+1\)có đồng thời là số nguyên tố không? Vì sao?
Bài 3: Chứng minh rằng nếu P và P+2 là 2 số nguyên tố lớn hơn 3 thì tổng của chúng chia hết cho 12.
Bài 4: Tìm số nguyên tố p, sao cho p+10 và p+14 là số nguyên tố. Chứng minh rằng không còn nữa,