Gọi 2016 số nguyên đấy là: \(a_1;a_2;a_3;...;a_{2016}\)
Ta có: \(a_i^3-a_i=a_i\left(a_i^2-1\right)=a_i\left(a_i-1\right)\left(a_i+1\right)⋮6\) với i là số bất kì từ 1 đến 2016
( 3 số tự nhiên liên tiếp vừa chia hết cho 2 vừa chia hết cho 3 nên chia hết cho 6 )
=> \(\left(a_1^3+a_2^3+a_3^3+...+a_{2016}^3\right)-\left(a_1+a_2+a_3+...+a_{2016}\right)\)
\(\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+\left(a_3^3-a_3\right)+...+\left(a_{2016}^3-a_{2016}\right)⋮6\)
mà \(a_1+a_2+a_3+..+a_{2016}=2016⋮6\)
=> \(a_1^3+a_2^3+a_3^3+..+a_{2016}^3⋮6\)