PA

cho 2015 số nguyên dương a1;a2;...;a2015 thỏa mãn điều kiện 

 \(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+\frac{1}{\sqrt{a_3}}+...+\frac{1}{\sqrt{a_{2015}}}\ge89\)

chứng minh rằng trong 2015 số nguyên dương đó luôn tồn tại ít nhất 2 sô bằng nhau 

NA
28 tháng 4 2016 lúc 10:00

Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)

\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)

Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)

Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó

Bình luận (0)
TB
28 tháng 4 2016 lúc 10:37

http://olm.vn/thanhvien/phantuananhlop9a1

Bình luận (0)
KP
28 tháng 4 2016 lúc 14:22

Trời khó dã man con ngan! ai đồng tình cho mk xin 1 k nha!

Bình luận (0)

Các câu hỏi tương tự
BA
Xem chi tiết
HT
Xem chi tiết
NC
Xem chi tiết
GR
Xem chi tiết
BT
Xem chi tiết
DP
Xem chi tiết
LP
Xem chi tiết
DH
Xem chi tiết
TS
Xem chi tiết