Cho dãy tỉ số bằng nhau: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_9}{a_{10}}\)
CMR: \(\left(\dfrac{a_1+a_2+...+a_9}{a_2+a_3+..+a_{10}}\right)=\dfrac{a_1}{a_{10}}\)
Biết rằng \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2016}}{a_{2017}}.\) Chứng minh rằng: \(\dfrac{a_1}{a_{2017}}=\left(\dfrac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+...+a_{2017}}\right)^{2016}\)
cho các số \(0< a_1< a_2< a_3< ...< a_{15}\) chứng mình rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Bài 1: Cho dãy tỉ số bằng nhau: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2014}}{a_{2015}}.\)Chứng minh rằng ta có đẳng thức \(\frac{a_1}{a_{2015}}=\frac{a_1+a_2+a_3+...+a_{2014}}{a_2+a_3+a_4+...+a_{2015}}^{2014}\).
Lưu ý: Đẳng thức cần chứng minh có vế phải mũ 2014 toàn bộ cả phân số nhé!
\(Cho\) \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{n-1}}{a_n}=\dfrac{a_n}{a_1}\). Và \(a_1+a_2+...+a_n\ne0;a_1=-\sqrt{5}\). Tính \(a_2;a_3;...a_n=?\)
Cho các số nguyên\(a_1;a_{2;...;}a_{2015}\)thỏa mãn \(a_{1+}a_2+a_3+...+a_{2015}=0\)
Và\(a_1+a_2=a_3+a_4=....=a_{2015}+a_1=1\)Vậy A =???
Cho dãy tỉ số bằng nhau \(\frac{a_1}{a_2}=\)\(\frac{a_2}{a_3}=\frac{a_3}{a_4}=..........=\frac{a_{2020}}{a_{2021}}\). Chứng minh rằng :
\(\frac{a_1}{a_{2021}}=\)\(\left(\frac{a_1+a_2+a_3+......+a_{2020}}{a_2+a_3+a_4+......+a_{2021}}\right)2020\)
Cho các số nguyên \(a_1;a_2;a_3;...;a_{2015}\)thỏa mãn \(a_1+a_2+a_3+...+a_{2015}=0\)
Và \(a_1+a_2=a_3+a_4=...=a_{2015}+a_1=1\). Vậy \(a_1=?\)
Cho dãy tỉ số bằng nhau: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2008}}{a_{2009}}\)
Chứng minh rằng ta có đẳng thức: \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+...+a_{2009}}\right)^{2008}\)