2a + 3b ⋮ 7 => 2( 2a + 3b ) ⋮ 7 => 4a + 6b ⋮ 7
Xét tổng (4a + 6b) + (3a + b)
= (4a + 3a) + (6b + b)
= 7a + 7b
= 7(a + b) ⋮ 7
=> (4a + 6b) + (3a + b) ⋮ 7
Mà 4a + 6b ⋮ 7 . Để (4a + 6b) + (3a + b) ⋮ 7 <=> 3a + b ⋮ 7
Vậy 3a + b ⋮ 7 ( đpcm )
cho 2 số tự nhiên a,b : chứng minh 2a+3b chia hết cho 7 <=> 3a+b chia hết cho 7