Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho x, y là các số thực thỏa x2 + 2xy + 3y2 =4 . Tìm MIN, MAX của biểu thức D = 2x2 - xy - y2.
tìm max y-2y^2+x^2-5x và
7xy-3x^2-4y^2+2x-3y+5
tìm min
3y^2-2xy+6x^2 -x +2y-1
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.
Cho x và y là 2 số thực thỏa mãn x^2+y^2=1
Tìm Max M= x^5+2y
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm max của \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
cho 2 số thực x , y thỏa mãn 2x + 3y = 1 . Tìm GTNN của S = 3x^2 + 2y^2
Cho các số thực dương x, y thỏa mãn 2x2 + 3y2 = 5xy. Tính giá trị của biểu thức \(\frac{\text{x + 2y}}{\text{3x - y}}\)
Cho 2 số thực dương x;y thoả mãn \(\frac{4}{x^2}+\frac{5}{y^2}\ge9.\)Tìm giá trị nhỏ nhất của \(Q=2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)
Cho 2 số thực dương x,y thoả mãn x+2y lớn hơn hoặc bằng 2 . Tìm GTNN của P= 2x2+16y2+2/x+3/y