từ biểu thức đk => x.y^2 =x/(1+2x)^2
=> p =0 => x =0 => loại p =0
p> 0
1/p =4x +4 +1/x
áp cô si hai số dương
1/p >= 2.căn )4x.1/x) +4 =4+4 =8
=> p <=1/8
tại x =1/2 thỏa mãn
max : x .y^2 =1/8
từ biểu thức đk => x.y^2 =x/(1+2x)^2
=> p =0 => x =0 => loại p =0
p> 0
1/p =4x +4 +1/x
áp cô si hai số dương
1/p >= 2.căn )4x.1/x) +4 =4+4 =8
=> p <=1/8
tại x =1/2 thỏa mãn
max : x .y^2 =1/8
Cho các số thực x, y thỏa mãn \(\left(3-x\right)\sqrt{2-x}-2y\sqrt{2y-1}=0\) và \(x< 2,y>\dfrac{1}{2}\) . Tìm GTNN của biểu thức;
\(A=5-2x-2\sqrt{2y-1}+\dfrac{1}{2y-1}\)
Cho x,y,z là 3 số thực dương thay đổi. Tìm min
\(Q=x\left(\dfrac{x}{2}+\dfrac{1}{yz}\right)+y\left(\dfrac{y}{2}+\dfrac{1}{xz}\right)+z\left(\dfrac{z}{2}+\dfrac{1}{xy}\right)\)
Cho các số dương x, y, z thỏa mãn: x +y + z = 4.
Chứng minh: \(\dfrac{1}{xy}+\dfrac{1}{xz}\ge1\)
Cho x, y là các số dương thỏa mãn xy = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = (x + y + 1) (x2 + y2) + \(\dfrac{4}{x+y}\)
1/ Giải pt: a/ \(\dfrac{3}{x^2+x-5}+\dfrac{2}{x^2+x-4}=-2\)
b/ \(x\left(\dfrac{5-x}{x+1}\right)\left(x+\dfrac{5-x}{x+1}\right)\)=6
2/ Cho hai số dương x,y thõa: \(x^3+y^3=x-y.CMR:x^2+y^2< 1\)
Cho 2 số thực dương x,y,z thảo mãn : xyz=1. Tìm giá trị lớn nhất của biểu thức :
\(P=\sum\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}\)
cho x,y,z thay đổi; x,y,z>=0; xy+yz+xz=xyz
tìm MAX : M=\(\dfrac{1}{4x+3y+z}+\dfrac{1}{4y+3z+x}+\dfrac{1}{4z+3x+y}\)
Cho x,y là 2 số dương thay đổi.Tìm giá trị nhỏ nhất của biểu thức:
\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
cho hàm số: \(y=\left(2m-1\right)x+n\) với \(\left(m\ne\dfrac{1}{2}\right)\)
Tìm giá trị của m, n biết n=2m và đồ thị hàm số \(y=\left(2m-1\right)x+n\) cắt đồ thị hàm số \(y=\dfrac{1}{2}x-4\) tại một điểm trên trục tung