Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a, b là số tự nhiên. Chứng minh nếu 5a+ 3b và 13a+ 8b chia hết cho 2012 thì a và b cũng chia hết cho 2012
a) Cho A = 5a+3b; B = 13a+8b(a; b thuộc N*)chứng minh (A; B) = (a; b)
b) Tổng quát A = ma + nb; B = pa + qb thỏa mãn |mq - np| = 1 với a; b; m; n; p; q thuộc N*. Chứng minh (A; B) = (a; b)
Cho a/b=c/d.Chứng minh
a) 5a+3b/5a-3b=5c+3d/5c-3d
b)7a^2+3ab/11a^2-8b^2
Cho a/b=c/d. Chứng minh:
a: 5a+3b/5a-3b = 5c+3d/5c-3d
b: 7a^2 +3ab/11a^2-8b^2 = 7c^2+3cd/11c^2-8d^2
Cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a, \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b, \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
c, \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\) thì
a,\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b,\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
bài 4 cmr nếu a/b=c/d thì
a. 5a+3b/5a-3b=5c+3d/5c-3d
b.7a^2+3ab/11a^2-8b^2/7c^2+3cd/11c^2-8b^2
chứng minh rằng :
\(\frac{a}{b}=\frac{c}{d}\)thì
a) \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
b) \(\frac{7a^2+3ab}{11a^2-8b^2}\)= \(\frac{7c^2+3cd}{11c^2-8d^2}\)
CMR:nếu a/b=c/d thì a)5a+3b/5a-3b ; b)7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2