Ta co: 1/x + x + 2/y +2y \(\ge\) 2 căn(1/x.x)+2căn(2/y.2y) ( Cauchy)
=>1/x + 2/y + x +2y \(\ge\)6
Ma: x+2y=3 (gt)
=> 1/x + 2/y \(\ge\) 3 ( dpcm)
**** nhe
Ta co: 1/x + x + 2/y +2y \(\ge\) 2 căn(1/x.x)+2căn(2/y.2y) ( Cauchy)
=>1/x + 2/y + x +2y \(\ge\)6
Ma: x+2y=3 (gt)
=> 1/x + 2/y \(\ge\) 3 ( dpcm)
**** nhe
Cho hai số dương x,y thỏa mãn: x+2y=3.CMR \(\frac{1}{x}+\frac{2}{y}\ge3\)
đố nek.
Cho x,y là các số thực dương thỏa mãn \(2y>x\)CMR:\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\)
các bạn giải hộ mình nha!
Cho hai số dương x,y thỏa mãn: x+2y=3 . Chứng minh rằng: \(\frac{1}{x}+\frac{2}{y}\ge3\)
cho x,y,z là các số thực dương tm đk xyz=8
cmr \(\frac{1}{2x+y+6}\) \(+\frac{1}{2y+z+6}+\frac{1}{2z+x+6}\le\frac{1}{4}\)
Cho 3 số thực dương x, y, z thỏa mãn: 3y2z2+x2=2(x+yz).
CMR: \(\frac{x^2}{yz}+\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+z\right)^2}\ge3\)
cho x,y,z là các số thực dương cmr
\(\left(1+\frac{1}{x}\right)^4+\left(1+\frac{1}{y}\right)^4+\left(1+\frac{1}{z}\right)^4\ge3\left(1+\frac{3}{2+xyz}\right)^4\)
C1: Giả sử x,y là những số thực dương phân biệt tm:
\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
CMR 5y=4x
C2: Giả sử a,b,c là các số thực dương tm a+b+c=abc
\(\frac{a}{1+a^2}+\frac{2b}{1+b^2}+\frac{3c}{1+c^2}=\frac{abc\left(5a+4b+3c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
C3: Cho a,b,c khác 0 tm \(a\left(b+c\right)^2+b\left(c+a\right)^2+c\left(a+b\right)^2=4abc\)
CMR : \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)với n là số tự nhiên lẻ
C4: Cho các số a,b,x,y tm : ab khác 0 ; a+b khác 0 ; \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\); \(x^2+y^2=1\)
CMR : a, \(ay^2=bx^2\)
b, \(\frac{x^{200}}{a^{100}}+\frac{y^{200}}{b^{100}}=\frac{2}{\left(a+b\right)^{100}}\)
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
a. cho 2 số dương x,y thỏa man x: x+y=1
tìm min của bt : \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
b, cho x,y,z là các số dương thỏa mãn \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\)
cmr : \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\le\frac{3}{2}\)