PA

cho 2 số dương x;y thỏa mãn x+y=1

a, tìm GTNN của M=\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

b,chứng minh rằng N=\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{25}{2}\)

TT
9 tháng 3 2016 lúc 22:19

Theo bất đẳng thức Cô-Si, ta có \(1=x+y\ge2\sqrt{xy}\to xy\le\frac{1}{4}.\) Do vậy áp dụng bất đẳng thức Cô-Si 

\(xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{xy\cdot\frac{1}{16xy}}+\frac{15}{16\cdot\frac{1}{4}}=\frac{17}{4}.\)

a. Ta có \(M=\left(xy\right)^2+\frac{1}{\left(xy\right)^2}+2=\left(xy+\frac{1}{xy}\right)^2\ge\left(\frac{17}{4}\right)^2=\frac{289}{16}.\)  Dấu bằng xảy ra khi \(x=y=\frac{1}{2}.\) Vây giá trị bé nhất của M là \(\frac{289}{16}.\)
b.  Theo bất đẳng thức Cô-Si 

\(N\ge2\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)=2\left(xy+\frac{1}{xy}\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)\ge2\cdot\frac{17}{4}+4\sqrt{\frac{x}{y}\cdot\frac{y}{x}}=\frac{25}{2}.\)

Dấu bằng xảy ra khi và chỉ \(x=y=\frac{1}{2}.\) 

Bình luận (0)

Các câu hỏi tương tự
AL
Xem chi tiết
AL
Xem chi tiết
NT
Xem chi tiết
GL
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
BM
Xem chi tiết