cho các số dương x,y và x+y=1.Tìm GTNN cua \(A = {1 \over x^2+y^2}+{1 \over x*y}\)
Bài 1 : Cho x>1, y> 1. Tìm GTNN của P=\({x^2\over y-1}\) + \({y^2\over x-1}\)
Bài 2: Cho a,b \(\ge\)0 ; a2+b2 = 11. Tìm GTNN của M=ab + \({1\over a+b}\)
Cho x,y,z là ba số thực dương thỏa:x+y+z=3 .Tìm GTNN của biểu thức Q=x+1/1+y^2 +y+1/1+z^2 +z+1/1+x^2
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Cho các số thực dương x,y thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=4\). Tìm GTNN của biểu thức \(A=\left(x^2+\dfrac{1}{x^2}+1\right)^4+\left(y^2+\dfrac{1}{y^2}+1\right)^4\).
Cho các số dương x, y thỏa mãn x.y = 1. Tìm GTNN của biểu thức:
P = \[(x + y + 1).({x^2} + {y^2}) + \frac{4}{{x + y}}\]
Cho x,y là 2 số nguyên dương thỏa mãn x+y=1. Tính GTNN của biểu thức : M = (x+1/y)^2 + (y+1/x)^2
Cho x > 0, y > 0 và \({x\over2} + {8\over y} \leq 2\). Tìm GTNN của biểu thức \(K = {x\over y} + {2y \over x}\)
1) Cho x, y các số dương thỏa mãn x + y + xy = 8. Tìm GTNN của biểu thức P= x2 + y2
2) Cho x, y > 0, x + y = 1. Tìm GTNN của \(N=\frac{1}{x^2+y^2}+\frac{1}{xy}\)
3) Cho x, y, z là các số dương. Chứng minh rằng: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)