\(x+y=6\sqrt{xy}\)
\(\Leftrightarrow\left(x+y\right)^2=36xy\)
\(\Leftrightarrow x^2-34xy+y^2=0\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^2-34\left(\frac{x}{y}\right)+1=0\)
Đặt \(\frac{x}{y}=t>0\Rightarrow t^2-34t+1=0\)
\(\Rightarrow t=17\pm12\sqrt{2}\) hay \(\frac{x}{y}=17\pm12\sqrt{2}\)