gọi giao của AH và O'O là H
=>AH vuông góc với OO' tại H
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
\(OO'=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{20\cdot15}{20}=12\left(cm\right)\)
=>AB=24cm
gọi giao của AH và O'O là H
=>AH vuông góc với OO' tại H
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
\(OO'=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{20\cdot15}{20}=12\left(cm\right)\)
=>AB=24cm
Cho 2 đường tròn (O,R)và (O',R') cắt nhau tại A và B sao cho đường thẳng Oa là tiếp tuyến của đường tròn (O',R') biết R=12cm R'=5cm a,
a. cmr O'A là tiếp tuyến của đường tròn (O,R) b,
b. tính độ dài các đoạn thẳng AB
c. Trên đường thằng AB lấy điểm M ngoài đoạn thẳng AB. Vẽ các tiếp tuyến MT và MT’ kẻ từ M lần lượt đến hai đường tròn (O,R)và (O',R') (T và T’ là tiếp điểm). Chứng minh rằng MT=MT’.
Cho đường tròn (O; 15cm ). Dây BC= 24cm. Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại A a/ tính khoảng cách từ tâm đến dây BC b/ chứng minh ba điểm O;A;H thẳng hàng c/ tính độ dài AB và AC
Cho đường tròn tâm O bán kính R và 1 điểm A nằm ngoài đường tròn sao cho OA = 2R . Vẽ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm ) Đường thẳng OA cắt BC tại H. Cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
a) Chứng minh R2 = OA . HM
b) Vẽ cát tuyến bất kì ADE. Gọi K là điểm DE. Chứng tỏ 5 điểm A, B, O, K ,C cùng thuộc 1 đường tròn. Xác định tâm và bán kính của đường tròn đó .
c) Chứng minh AM . AN = AH . AO
Cho đường tròn (O) đường kính BC = 2R và dây cung AB = R.
a) Chứng minh ABC vuông tại A. Tính độ dài cạnh AC theo R.
b) Trên tia OA lấy điểm D sao cho A là trung điểm của OD. Chứng minh DB là tiếp tuyến của đường tròn (O).
c) Vẽ tiếp tuyến DM với đường tròn (O) (M là tiếp điểm).Chứng minh BDM là tam giác đều. d)Chứng minh tứ giác AMOB là hình thoi
Mình đang cần gấp mong mọi người giúp mình ^^
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Cho (O;R) và điểm A nằm bên ngoài đường tròn, biết OA=2R. Kẻ tiếp tuyến AB với đường tròn. Vẽ dây BC vuông góc với OA tại I.
a) Tia OA cắt (O) tại E. Tứ giác OBEC là hình gì? Vì sao?
Bài 4: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Vẽ đường kính BD của đường tròn (O) a) Chứng minh: OA BC và DC // OA. b) Đường thẳng AD cắt (O) tại điểm thứ hai là E. Chứng minh: AE.AD = AC2
BT : Cho đường tròn (O;R) , đường kính AB và điểm C thuộc đường tròn (O) sao cho BC=R . Gọi H là trung điểm của dây cung AC . Tiếp tuyến tại C của (O) cắt tia OH tại D ,
a) C/minh : ACB=90
b) Tính độ dài đoạn thẳng DC
c) C/minh : DA là tiếp tuyến tại A của đường tròn (O)
* Hình vẽ : ( mình o biết có đúng không nhưng mọi người làm giúp mình nha)
Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).Cho đường tròn (O) đường kính C là điểm trên đường tròn (O) sao cho Vẽ Chứng minh vuông. Tính độ dài CH và số đo (làm tròn đến độ)Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại D. Chứng minh Tiếp tuyến tại A của đường tròn (O) cắt BC tại E. Chứng minh: Gọi I là trung điểm của CH. Tia BI cắt AE tại F. Chứng minh: FC là tiếp tuyến của đường tròn (O).