Bài 3: Phép đối xứng trục

BT

cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .

Hướng dẫn : khi BC không phải là đường kính , gọi H' là giao điểm của đường thẳng AH với đường tròn (O ; R) . Chứng minh rằng H đối xứng với H' qua đường tròn BC .

LH
26 tháng 8 2016 lúc 18:10

- Kẻ đường kính BB’

.Nếu H là trực tâm của tam giác ABC thì AH=B’C. Do C,B’ cố định , cho nên B’C là một véc tơ cố định => AH = B'C

. Theo định nghĩa về phép tịnh tiến điểm A đã biến thành điểm H .

Nhưng A lại chạy trên (O;R) cho nên H chạy trên đường tròn (O’;R) là ảnh của (O;R) qua phép tịnh tiến dọc theo v = B'C

- Cách xác định đường tròn (O’;R) .

Từ O kẻ đường thẳng song song với B’C . Sau đó dựng véc tơ : OO' = B'C

Cuối cùng từ O’ quay đường tròn bán kính R từ tâm O’ ta được đường tròn cần tìm .

Bình luận (3)
ND
26 tháng 8 2016 lúc 18:15

cho 2 điểm B , C cố định nằm trên đường tròn (O ; R) và điểm A thay đổi trên đường tròn đó . Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H của tam giác ABC nằm trên 1 đường tròn cố định .

lấy đường kính AH' hãy chứng minh H và H' đối xứng qua trung điểm I của BC (tức là chứng minh BHCH' là hình bình hành), dễ thôi. H đối xứng với H' qua I mà H' thuộc (O;R) suy ra H thuộc (I;R). 
hàm chẵn thì f(x)=f(-x), lấy 2 điểm (-x;b) và (x;b) , hai điểm có trung điểm là (0;b) thuộc x=0 với mọi x vậy đối xứng qua trục Oy.

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
BT
Xem chi tiết
ND
Xem chi tiết
PL
Xem chi tiết
DM
Xem chi tiết
NK
Xem chi tiết
SK
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết