không phải lớp một nha bạn
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
không phải lớp một nha bạn
Bài 1: tìm cặp số \(\left(x,y\right)\)thỏa mãn:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Bài 2: cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và \(a+b+c\ne0\);\(a=2017\).tính \(b,c\)
Bài 3: a) tìm x,y,z biết \(\frac{y+x+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
b) tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
c) tìm x,y biết \(\frac{2x+1}{5}=\frac{4y-5}{9}=\frac{2x+4y-4}{7x}\)
d) tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\left(x,y,z\ne0\right)\)
cho x,y , z dương
trong đó x+y < z
cmr
( x + y + z)( 1/ x 2 + 1/y2 + 1/z2 ) >= 27/2
dung cô- si , ai jup mình vs . bài lớp 8 nha
Cho a,b,c>0; a+b+c=3/4. Tìm min
\(M=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
BT hè vui :PP
1 ) Cho 3 số dương x, y, z có tổng bằng 1.Chứng minh rằng
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>14\)
2 ) Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z=3\).Chứng minh rằng
\(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\ge\frac{1}{9}+\frac{2}{27}\left(xy+yz+xz\right)\)
Cho x+y+z=2015 và 1/x+1/y+1/z=1/2015
Chứng tỏ trong 3 số x,y,z luôn tồn tại ở một số bằng 2015
Vì vai trò của x,y,z là như nhau nên ta đặt: \(0\le x\le y\le z\le1\)
Ta có:\(\frac{x}{yz+1}+\frac{y}{xz+1}+\frac{z}{xy+1}\le\frac{x}{xy+1}+\frac{y}{xy+1}+\frac{z}{xy+1}=\frac{x+y+z}{xy+1}\left(1\right)\)
Ta lại có: \(0\le x\le1;0\le y\le1\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\ge0\)
\(\Leftrightarrow xy-x-y+1\ge0\)
\(\Leftrightarrow xy+1\ge x+y\left(2\right)\)
Từ (2);(1) và \(z\le1\) suy ra: \(\frac{x+y+z}{xy+1}\le\frac{\left(xy+1\right)+1}{xy+1}\le\frac{2xy+2}{xy+1}=2\)
Tìm x,y e Z:
a, 1/x = 1/6 + y/3
b, 1/x - 1/y = 1/x . 1/y( x khác y khác 0)
Cho x, y, z > 0 thỏa mãn xyz = 1. Chứng minh :
\(\frac{xy}{x^5+xy+y^5}+\frac{yz}{y^5+yz+z^5}+\frac{zx}{z^5+zx+x^5}\le1\)
Bài 1: Tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Bài 2: \(CMR\)với \(a,b,c\in R\)(tập số thực),\(a,b,c\ne0\)thỏa mãn \(b^2=ac\)thì
\(\frac{a}{c}=\frac{\left(a+2017b\right)^2}{\left(b+2017c\right)^2}\)
Bài 3: cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(CMR\)biểu thức sau có giá trị nguyên
\(P=\frac{x+y}{z+t}=\frac{y+z}{t+x}=\frac{z+t}{x+y}=\frac{t+x}{y+z}\)
AI GIÚP MK VỚI