IU

Cho \(1\le a;b\le2\).Tìm GTNN của A= \(\frac{\left(a+b\right)^2}{a^2+b^2}\)

H24
19 tháng 5 2017 lúc 8:36

\(\frac{\left(a+b\right)^2}{a^2+b^2}\)\(\frac{a^2+b^2+2ab}{a^2+b^2}\)= 1 + \(\frac{2ab}{a^2+b^2}\)

Ta có: a,b > 0

a2 + b2 >= 2\(\sqrt{a^2b^2}\) = 2ab

Tỉ số \(\frac{2ab}{a^2+b^2}\)càng nhỏ khi |a - b| càng lớn.

Mà 1 <= a,b <= 2

=> Max|a - b| = 1 khi a = 2, b = 1 hoặc a = 1, b = 2

Vậy, MinA = 1 + \(\frac{2.1.2}{1^2+2^2}\)= 1 + \(\frac{4}{5}\)\(\frac{9}{5}\)

Bài này nếu tính GTLN thì MaxA = 2 khi a = b

Bình luận (0)
VK
25 tháng 11 2017 lúc 6:24

Câu trả lời của tớ là : MaxA = 2 khi a = b

Ý tớ là đồng ý với kết quả của Chibi

tk nha

Bình luận (0)

Các câu hỏi tương tự
WR
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
LA
Xem chi tiết
DA
Xem chi tiết