cho 1/a+1/b+1/c=2 va :a+b+c=abc
.chung minh rang:
.
cho 1/a+1/b+1/c=2 va :a+b+c=abc
.chung minh rang:
.
Cho a,b.c la cac so duong va abc = 1
Chung minh rang \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
1. Cho a,b la 2 so duong thoa a+b<=1.chung minh rang \(6b+\frac{1}{3a}+\frac{4}{b}\ge11\).
2. cho a,b,c la cac so nguyen duong sao cho (a-b).(a-c).(b-c)=a+b+c
a. chung minh rang a+b+c chia het cho 2
b. Tim gia tri nho nhat cua M=a+b+c
cho a, b, c la cac so duong thoa man a\(a^2+b^2+c^2=3\) . Chung minh rang : \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>=3\)
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
Cho a,b,c\(\ge0\)thoa man abc=1.Chung minh rang
\(\frac{1}{2a^3+3a+2}+\frac{1}{2b^3+3b+2}+\frac{1}{2c^3+3c+2}\)\(\ge\frac{3}{7}\)
cho a,b,c >0 va abc=1 CM \(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}=< 1\)
giups minh voi cac ban nha. Kho qua hu hu: Cho a>0, b>0 va a+b=1 chung minh rang \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2>=12,5\)
cho a,b,c >0 va abc=1 c/m
\(\frac{1+ab^2}{c^3}+\frac{1+bc^2}{a^3}+\frac{1+ca^2}{b^3}>=\frac{18}{a^3+b^3+c^3}\)
Bài 1: Cho a,b,c là các số thực dương. Chứng minh:
\(\frac{a+b}{bc+a^2}+\frac{b+c}{ac+b^2}+\frac{a+c}{ab+c^2}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\)\(\frac{1}{c}\).
Bài 2: Cho a,b,c là các số dương thỏa mãn: abc=1.
Chứng minh rằng P= \(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{3}{2}\).
AI GIẢI GIÚP EM VỚI... NHIỀU BÀI KHÓ THẾ NÀY EM SAO LÀM NỔI!!