H24

cho 15 số nguyên a1;a2;a3;...;a15 và b1;b2;b3;...;b15 cũng là các số nguyên đó nhưng theo thứ tự khác.chứng minh rằng (a1-b1)(a2-b2)(a3-b3)...(a15-b15) là số chẵn

SN
5 tháng 6 2015 lúc 12:06

giả sử (a1-b1)(a2-b2)(a3-b3)...(a15-b15) là số lẻ

=>a1-b1;a2-b2;...;a15-b15 là số lẻ

=>a1-b1+a2-b2+...+a15-b15 là số lẻ  (1) (vì có 16 cặp số lẻ)

mà a1-b1+a2-b2+...+a15-b15=(a1+a2+...+a15)-(b1+b2+...+b15)=0 là số chẵn (2)

=>(1) và (2) mâu thuẫn nhau 

=>(a1-b1)(a2-b2)(a3-b3)...(a15-b15) là số chẵn

=>đpcm

Bình luận (0)
DV
5 tháng 6 2015 lúc 12:08

Xét tổng:

\(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)\)

\(=\left(a_1+a_2+...+a_7\right)-\left(b_1+b_2+...+b_7\right)\)

Vì  a1;a2;a3;...;a15 và b1;b2;b3;...;b15 cũng là các số nguyên đó nhưng theo thứ tự khác nên 

=> \(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)=0\)

Suy ra ít nhất có 1 trong 7 số là số chẵn, vì nếu cả 7 số đều lẻ thì tổng của 7 số lẻ là 1 số và do đó nó khác 0.

Nếu 1 trong 7 số là số chẵn thì tích 7 số đó:

\(\left(a_1-b_1\right)+\left(a_2-b_2\right)+...+\left(a_7-b_7\right)\)là số chẵn

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DN
Xem chi tiết
LN
Xem chi tiết
NH
Xem chi tiết
CA
Xem chi tiết
CM
Xem chi tiết
NA
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
LN
Xem chi tiết