\(12x^2+13y^2=25xy\)
\(\Leftrightarrow12x^2-25xy+13y^2=0\)
\(\Leftrightarrow12x^2-12xy-13xy+13y^2=0\)
\(\Leftrightarrow12x\left(x-y\right)-13y\left(x-y\right)=0\)
\(\Leftrightarrow\left(12x-13y\right)\left(x-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}12x-13y=0\\x-y=0\end{cases}}\)
Mà để A xác định \(\Leftrightarrow x-y\ne0\) Do đó \(12x-13y=0\Leftrightarrow12x=13y\Rightarrow x=\frac{13}{12}y\)
\(\Rightarrow A=\frac{\frac{13}{12}y+y}{\frac{13}{12}y-y}=\frac{y\left(\frac{13}{12}+1\right)}{y\left(\frac{13}{12}-1\right)}=\left(\frac{13}{12}+1\right):\left(\frac{13}{12}-1\right)=\frac{25}{12}:\frac{1}{12}=25\)