Bạn xem lời giải tại đây:
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24
Bạn xem lời giải tại đây:
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn: \(\dfrac{1}{\sqrt{a_1}} \dfrac{1}{\sqrt{a_2}} ... \dfrac{1}{\sqrt{a_{100}... - Hoc24
Cho 2016 số thực: \(a_1,a_2,a_3,..........a_{2016}\) thỏa mãn: \(a_1^2+a_2^2+a_3^2+...........+a_{2016}^2=1008\).CM: \(\left|\dfrac{a_1}{1}+\dfrac{a_2}{2}+\dfrac{a_3}{2}+...........+\dfrac{a_{2016}}{2016}\right|< \sqrt{2016}\)
cho 100 STN \(a_1,a_2,...,a_{100}\) thỏa mãn:
\(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\)
cm trong 100 STN đó có 2 số bằng nhau.
Cho 2012 số nguyên dương \(a_1,a_2,a_3,...,a_{2012}\) thỏa mãn:
\(\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{2012}}}=125\)
Chứng minh: Trong 2012 số trên tồn tại ít nhất 3 số bằng nhau
Cho 10 số nguyên dương \(a_1,a_2,a_3,...,a_{10}\) thoả mãn điều kiện: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_n}=\dfrac{11}{2}\). Chứng minh rằng có ít nhất 2 trong 10 số nguyên dương trên bằng nhau
1. cho \(a=\dfrac{1-\sqrt{2}}{2}\). Tính A = \(\sqrt{16a^8-51a}\)
2. Cho 100 số tự nhiên a1,a2,...,a100 thoả mãn \(\dfrac{1}{\sqrt{a_1}}+\dfrac{1}{\sqrt{a_2}}+...+\dfrac{1}{\sqrt{a_{100}}}=19\)
Chứng minh rằng trong 100 số tự nhiên đó tồn tại 2 số bằng nhau
với mỗi số nguyên dương n ta kí hiệu \(a_n\) là số nguyên gần \(\sqrt{n}\) nhất
tính giá trị của tổng: \(S=\dfrac{1}{a_1}+\dfrac{1}{a_2}+\dfrac{1}{a_3}+...+\dfrac{1}{a_{2017}}+\dfrac{1}{a_{2018}}\)
Tồn tại hay không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\) nguyên lẻ thoả mãn đẳng thức: \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a_{2019}^2\)
Bài 1: Giải hpt : \(\left\{{}\begin{matrix}x+y+z=6\\xy+yz-zx=-1\\x^2+y^2+z^2=14\end{matrix}\right.\)
Bài 2: Cho các số \(a_1,a_2,...,a_{2009}\) được xác định theo công thức:
\(a_n=\dfrac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\) với \(n=1,2,...,2008\)
CMR: \(a_1+a_2+...+a_{2009}< \dfrac{2008}{2010}\)
a, Tồn tại hay không 2019 số nguyên lẻ \(a_1,a_2,a_3,...,a_{2019}\)thỏa mãn:
\(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a_{2019}^2\)
b, Tìm cặp số nguyên x,y thỏa mãn:
\(5x^2+5y^2+8xy+2y-2x+2=0\)