Ta có \(-1\le x,y,z\le2\Leftrightarrow\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2-x-2\le0\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}y^2-y-2\le0\left(2\right)\\z^2-z-2\le0\left(3\right)\end{cases}}\)
Cộng từng vế (1)(2)(3) và do x+y+z=0 nên P\(\le6\left(4\right)\)
Từ hệ \(\hept{\begin{cases}\left(x+1\right)\left(x-2\right)=0\\\left(y+1\right)\left(y-2\right)=0\\\left(z+1\right)\left(z-2\right)=0\end{cases}}\)và x+y+z=2
=> trong 3 số x,y,z có một trong 2 số bằng 2 và hai số bằng -1
Vì thế chẳng hạn khi x=2; y=z=-1 (lúc đó x+y+z=0) ta có P=6
Vậy maxP=6