Cho ∫ 1 2 1 x x 3 + 1 d x = 1 a ln b c + d với a, b, c, d là các số nguyên dương và b c tối giản. Giá trị của a+b+c+d bằng
A. 12
B. 10
C. 18
D. 15
Biết ∫ sin 2 x - cos 2 x 2 d x = x + a b cos 4 x + C với a,b là các số nguyên dương, a b là phân số tối giản và C ∈ ℝ . Giá trị của a+b bằng
A. 5
B. 4
C. 2
D. 3
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho ∫ 0 9 16 1 x + 1 + x + 1 d x = a - b ln 2 c với a,b,c là các số nguyên dương và a/c tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Cho ∫ 3 8 1 x + x x + 1 d x = 1 2 ln a b + c d với a, b, c, d là các số nguyên dương và a b , c d tối giản. Giá trị của abc--d bằng
A. -6
B. 18
C. 0
D. -3
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b l n 2 - l n c với a,b,c là các số nguyên dương và a/b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
A. S = 4 3
B. S = 8 3
C. S = 6 5
D. S = 10 3
Biết rằng 1 1 . 2 . 3 + 1 2 . 3 . 4 + . . . + 1 n ( n + 1 ) ( n + 2 ) = a n 2 + b n c n 2 + d n + 16 trong đó a,b,c,d và n là các số nguyên dương.Tính giá trị của biểu thức T=a+b+c+d
A. 45
B.40
C. 38
D. 24
Cho ∫ 0 3 2 + 1 + x d x = a + b c với a,b,c là các số nguyên dương và a b tối giản. Giá trị của biểu thức a+b+c bằng
A. 115.
B. 58.
C. 511.
D. 223.