Cho \(0\le a,b,c\le2\)và a + b + c = 3 . CMR : \(a^2+b^2+c^2\le5\).
Cho 3 số a, b, c thoả mãn \(0\le a,b,c\le2\)và a+b+c=3. Chứng minh rằng: \(a^3+b^3+c^3\le9\)
Cho các số thực a,b,c thỏa mãn: \(-1\le a\le2;-1\le b\le2;-1\le c\le2\) và \(a+b+c=0\)
Chứng minh \(a^2+b^2+c^2\le6\)
Tìm GTLN của
\(A=a^3+b^3+c^3\)biết \(0\le c\le b\le a\le2\)và a+b+c=3
Cho \(a,b,c\ge0;a+b+c=3\). Chứng minh rằng \(3\le a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\).
Cho 3 số thực a,b,c thỏa mãn:\(1\le a\le2;1\le b\le2;1\le a\le2\).Chứng minh rằng \(a^2+b^2+c^2+ab+bc+ca+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)^3\)
Cho a, b, c thỏa mãn \(-1\le a,b,c\le1\)và a+b+c=0
C/m \(a^2+b^3+c^4\le2\)
Cho a, b, c thõa mãn \(0\le a,b,c\le2\) và \(a+b+c=3\)
Chững minh \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge\sqrt{2}\)
Cho \(a,b,c\ge0\); \(a+b+c=3\). Chứng minh rằng:
\(3\le a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)