Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho 3 so a,b,c>0 và a+b+c=1 Tim min A=(a^2+b^2+c^2)+(ab+bc+ca)/(a^2b+b^2c+c^2a)
cho a+b+c=0 .
Chứng minh a, \(\frac{4bc-a^2}{bc+2a^2}.\frac{4ab-c^2}{ab+2c^2}.\frac{4ac-b^2}{ac+2b^2}\)=1
b, \(\frac{4bc-a^2}{bc+2a^2}+\frac{4ab-c^2}{ab+2c^2}+\frac{4ac-b^2}{ac+2b^2}\)=3
cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=1\).CMR
\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}+\dfrac{\sqrt{bc+2a^2}}{\sqrt{1+bc-a^2}}+\dfrac{\sqrt{ca+2b^2}}{\sqrt{1+ca-b^2}}\ge2+ab+bc+ca\)
cho a b c > 0
chứng minh rằng
a/(b+4c+2a) + b/(c+4a+2b) + c/(a+4b+2c) <= 1/2
(3a-b)/(a^2+ab) + (3b-c)/(b^2+cb) + (3c-a)/(ac^2+ac) <= a/bc +b/ac + c/ab
Cho a,b,c>0 tm: a+b+c=ab+bc+ca
CMR: \(\dfrac{2a-1}{a^2-a+1}+\dfrac{2b-1}{b^2-b+1}+\dfrac{2c-1}{c^2-c+1}=\dfrac{3}{\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right)}\)
Cho a, b, c > 0. Chứng minh : \(\frac{1}{2a^2+bc}+\frac{1}{2b^2+ca}+\frac{1}{2c^2+ab}\le\left(\frac{a+b+c}{ab+bc+ca}\right)^2\)
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
Cho a,b,c>0 biết ab+bc+ca+abc=2.Tìm CTLN của \(M=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)