\(x\left(3x-4\right)=2x^2+1\)
\(\Leftrightarrow3x^2-4x-2x^2-1=0\)
\(\Leftrightarrow x^2-4x-1=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)
Ta có :
\(A=x_1^2+x_2^2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)
\(=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4^2-1\)
\(=16-1\)
\(=15\)