Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NM

Chắc các bạn lớp 8;9 sẽ cần 

Xét đa thức $f\left(x\right)=ax^4+bx^3+cx^2+dx+e$ với $a\ne 0$

Khi đó 

$ax^4+bx^3+cx^2+dx+e=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)$

$\Leftrightarrow ax^{4\: }+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

Trong đó

$\hept{\begin{cases}\orbr{\begin{cases}S=x_1+x_2=x_1+x_3=x_1+x_4=x_2+x_3=x_2+x_4=x_3+x_4\\S'=x_3+x_4=x_2+x_4=x_2+x_3=x_1+x_4=x_1+x_3=x_1+x_2\end{cases}}\\\orbr{\begin{cases}P=x_1x_2=x_1x_3=x_1x_4=x_2x_3=x_2x_4=x_3x_4\\P'=x_3x_4=x_2x_4=x_2x_3=x_1x_4=x_1x_3=x_1x_2\end{cases}}\end{cases}}$

Khi tìm đc S;S';P;P' thì bài toán sẽ đc giải quyết 

Quy trình ép tích 

Bước 1

Bấm máy tính tìm các nghiệm $x_1;x_2;x_3;x_4$

Gán $x_1\rightarrow A;x_2\rightarrow B;x_3\rightarrow C;x_4\rightarrow D$

Dùng máy tính dò tìm S;S';P;P' hợp lí nhất có thể

Dự đoán $ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

Bước 2: Ép tích theo kết quả biết trước

$ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$

 


Các câu hỏi tương tự
LA
Xem chi tiết
KT
Xem chi tiết
AV
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
ZZ
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
MQ
Xem chi tiết