Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

LN

Cầu thang có 10 bậc. Với mỗi bước, người khổng lồ Gouliver có thể nhảy một số bậc tùy ý. Vậy Gouliver có  cách để đi hết cầu thang.

H24
10 tháng 10 2016 lúc 22:30

là512

Bình luận (0)
H24
10 tháng 10 2016 lúc 22:30

là 512

Bình luận (0)
H24
10 tháng 10 2016 lúc 22:34

.là 512

vì ko biet giai thich

Bình luận (0)
LN
10 tháng 10 2016 lúc 22:36

4 cach

Bình luận (0)
HA
1 tháng 11 2016 lúc 12:24

Đáp án là 512

Bình luận (0)
TQ
30 tháng 6 2017 lúc 15:44

Gọi n là số bậc thang, ta sẽ xét các trường hợp đi từ đơn giản đến phức tạp, phụ thuộc vào giá trị tăng dần của số bậc thang n
Với n = 1, có 1 cách đi là bước 1 bậc 1 lần
Với n = 2, có 2 cách đi, biểu diễn dưới dạng số bước chân lần lượt là: 2 = 1 + 1
Với n = 3, có 3 = 1 + 1 + 1 = 1 + 2 = 2 +1. Vậy có 4 cách đi
Với n = 4, có 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 1 + 3 = 2 + 1 + 1 = 2 + 2 = 3 + 1. Vậy có 8 cách đi
Liệt kê dãy số cách đi, tương ứng với n tăng dần từ 1, ta được dãy số: 1, 2, 4, 8, … Đây là dãy số mà mỗi số bằng số trước nó nhân với 2
Với n = 5, có 16 cách đi
Với n = 6, có 32 cách đi
Với n = 7, có 64 cách đi
Với n = 8, có 128 cách đi
Với n = 9, có 256 cách đi
Với n = 10, có 512 cách đi
Vậy Gouliver có 512 cách để đi hết cầu thang

Bình luận (0)
TQ
30 tháng 6 2017 lúc 15:45

Gọi n là số bậc thang, ta sẽ xét các trường hợp đi từ đơn giản đến phức tạp, phụ thuộc vào giá trị tăng dần của số bậc thang n
Với n = 1, có 1 cách đi là bước 1 bậc 1 lần
Với n = 2, có 2 cách đi, biểu diễn dưới dạng số bước chân lần lượt là: 2 = 1 + 1
Với n = 3, có 3 = 1 + 1 + 1 = 1 + 2 = 2 +1. Vậy có 4 cách đi
Với n = 4, có 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 1 + 3 = 2 + 1 + 1 = 2 + 2 = 3 + 1. Vậy có 8 cách đi
Liệt kê dãy số cách đi, tương ứng với n tăng dần từ 1, ta được dãy số: 1, 2, 4, 8, … Đây là dãy số mà mỗi số bằng số trước nó nhân với 2
Với n = 5, có 16 cách đi
Với n = 6, có 32 cách đi
Với n = 7, có 64 cách đi
Với n = 8, có 128 cách đi
Với n = 9, có 256 cách đi
Với n = 10, có 512 cách đi
Vậy có 512 cách để đi hết cầu thang

Bình luận (0)
LP
15 tháng 4 2022 lúc 21:33

Gọi n là số bậc thang, ta sẽ xét các trường hợp đi từ đơn giản đến phức tạp, phụ thuộc vào giá trị tăng dần của số bậc thang n
Với n = 1, có 1 cách đi là bước 1 bậc 1 lần
Với n = 2, có 2 cách đi, biểu diễn dưới dạng số bước chân lần lượt là: 2 = 1 + 1
Với n = 3, có 3 = 1 + 1 + 1 = 1 + 2 = 2 +1. Vậy có 4 cách đi
Với n = 4, có 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 1 + 3 = 2 + 1 + 1 = 2 + 2 = 3 + 1. Vậy có 8 cách đi
Liệt kê dãy số cách đi, tương ứng với n tăng dần từ 1, ta được dãy số: 1, 2, 4, 8, … Đây là dãy số mà mỗi số bằng số trước nó nhân với 2
Với n = 5, có 16 cách đi
Với n = 6, có 32 cách đi
Với n = 7, có 64 cách đi
Với n = 8, có 128 cách đi
Với n = 9, có 256 cách đi
Với n = 10, có 512 cách đi
Vậy có 512 cách để đi hết cầu thang

Bình luận (0)

Các câu hỏi tương tự
TL
Xem chi tiết
NL
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
CR
Xem chi tiết
NS
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết