Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Mọi người giúp em bài này với ạ:
Cho các số thực dương x,y thỏa mãn x + y ≥ 3
Chứng minh rằng : \(x+y+\dfrac{1}{2x}+\dfrac{2}{y}\ge\dfrac{9}{2}\)
câu 1 Có bao nhiêu giá trị nguyên của x thỏa mãn cả hai bất phương trình sau:
\(\dfrac{x+2}{5}-\dfrac{3x-7}{4}>-5\)
và \(\dfrac{3x}{5}-\dfrac{x-4}{3}+\dfrac{x+2}{6}>6\)
a, 3 b,1 c,4 d,2
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy≠1. Tìm giá trị lớn nhất của
M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
Cho x,y là các số thực dương thỏa mãn điều kiện x+y-6xy=0 và xy\(\ne\)1. Tìm giá trị lớn nhất của M=\(\dfrac{\dfrac{x+1}{xy+1}+\dfrac{xy+x}{1-xy}+1}{1-\dfrac{xy+x}{xy-1}-\dfrac{x+1}{xy+1}}\)
Xét số thực \(x\) ≠ 0, \(\pm\)1 thỏa mãn \(x\) - \(\dfrac{1}{x}\) là số nguyên. Chứng minh rằng\(\left(x+\dfrac{1}{x}\right)^{2023}\)là số vô tỉ.
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
P=\(\left(\dfrac{x^2-3x}{x^2-9}-1\right):\left(\dfrac{9-x^2}{x^2+x+6}-\dfrac{x-3}{2-x}-\dfrac{x-2}{x+3}\right)\)
b) Rút gọn P. Tìm P với x thỏa mãn x3 -4x=0
Tìm n là số nguyên dương thỏa mãn \(\dfrac{n^6-1}{n-1}\) là số chính phương