TP

Câu hỏi: 
a) Chứng minh: 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 
b) Tìm số nguyên sao cho 4n + 1 chia hết cho n + 1

 

MT
18 tháng 6 2015 lúc 13:45

a)2014 + 2014^2 + 2014^3 + ... + 2014^10

=(2014+2014^2)+(2014^3+2014^4)+...+(2014^9+2014^10)

=2014(1+2014)+2014^3(1+2014)+...+1014^9(1+2014)

=2014.2015+2014^3.2015+...+2014^9.2015

vì 2014.2015 chia hết cho 2015

2014^3.2015 chia hết cho 2015

.....

2014^9.2015 chia hết cho 2015

=>2014.2015+2014^3.2015+...+2014^9.2015 chia hết cho 2015

vậy 2014 + 2014^2 + 2014^3 + ... + 2014^10 chia hết cho 2015 

Bình luận (0)
HG
18 tháng 6 2015 lúc 13:45

a,2014+20142+20143+....+201410

=(2014+20142)+(20143+20144)+.....+(20149+201410)

=2014.(1+2014)+20143.(1+2014)+.........+20149.(1+2014)

=2014.2015+20143.2015+..........+20149.2015

=2015.(2014+20143+...........+20149\(^._:\)2015 (đpcm)

b,4n+1\(^._:\)n+1

4n+4 -3\(^._:\)n+1

Vì 4n+4\(^._:\)n+1 =>3\(^._:\)n+1

=>n+1\(\in\){1; -1; 3; -3}

n+1n
10
-1-2
32
-3-4

KL: n\(\in\){0; 2; -2; -4}

 

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
TP
Xem chi tiết
KN
Xem chi tiết
H24
Xem chi tiết
KG
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết