VG

Câu 5. Chứng minh các số sau nguyên tố cùng nhau a) 2n + 3 và 4n + 8. b) 7n + 3 và 5n + 2

TC
20 tháng 11 2021 lúc 8:57

a) Gọi ƯCLN( 2n+3; 4n+8)=d      \(\left(d\in N\cdot\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(4n+8\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(4n+6\right)⋮d\\\left(4n+8\right)⋮d\end{matrix}\right.\)

\(\Rightarrow2⋮d\Leftrightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)

Nếu \(d=2\) thì \(\left(2n+3\right)⋮2\), vô lý

\(\Rightarrow d=1\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

Vậy ta có đpcm.

b) Gọi ƯCLN(7n+3;5n+2)=d            \(\left(d\in N\cdot\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(7n+3\right)⋮d\\\left(5n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5\left(7n+3\right)⋮d\\7\left(5n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(35n+15\right)⋮d\\\left(35n+14\right)⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\Leftrightarrow d=1\)

nên ƯCLN(7n+3;5n+2)=1         

Vậy ta có đpcm.

 

 

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
KT
Xem chi tiết
TN
Xem chi tiết
HN
Xem chi tiết
TN
Xem chi tiết
VT
Xem chi tiết
VC
Xem chi tiết
TT
Xem chi tiết
NL
Xem chi tiết